
Contents
Topics (1 of 3) 9

Topics (2 of 3) 10

Topics (3 of 3) 11

Goals for a true Python Compiler (1 of 2) 12

Goals for a true Python Compiler (2 of 2) 13

Goal: Pure Python - only faster 14

Goal: Pure Python - only faster (1 of 4) 15

Goal: Pure Python - only faster (2 of 4) 16

Goal: Pure Python - only faster (3 of 4) 17

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 1 of 79

Goal: Pure Python - only faster (4 of 4) 18

Goal: Code is not Performance Victim (1 of 5) 19

Goal: Code is not Performance Victim (2 of 5) 20

Goal: Code is not Performance Victim (3 of 5) 21

Goal: Code is not Performance Victim (4 of 5) 22

Goal: Code is not Performance Victim (5 of 5) 23

Discarded Alternative: PyPy - RPython (1 of 2) 24

Discarded Alternative: PyPy - RPython (2 of 2) 25

Discarded Alternative: PyPy - JIT 26

Discarded Alternative: Pyrex / Cython 27

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 2 of 79

Nuitka - Tailored to Goals 28

Target Language 29

Generated Code (1 of 2) 30

Generated Code (2 of 2) 31

Python to C++ gap (1 of 10) 32

Python to C++ gap (2 of 10) 33

Python to C++ gap (3 of 10) 34

Python to C++ gap (4 of 10) 35

Python to C++ gap (5 of 10) 36

Python to C++ gap (6 of 10) 37

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 3 of 79

Python to C++ gap (7 of 10) 38

Python to C++ gap (8 of 10) 39

Python to C++ gap (9 of 10) 40

Python to C++ gap (10 of 10) 41

Nuitka Design - Outside View 42

Nuitka Design - Inside View 43

Nuitka the Project - git flow (1 of 2) 44

Nuitka the Project - git flow (2 of 2) 45

Nuitka the Project - Plan (1 of 2) 46

Nuitka the Project - Plan (2 of 2) 47

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 4 of 79

Nuitka the Project - Status (1 of 5) 48

Nuitka the Project - Status (2 of 5) 49

Nuitka das Projekt - Status (3 of 5) 50

Nuitka the Project - Status (4 of 5) 51

Nuitka the Project - Status (5 of 5) 52

Nuitka the Project - Activities 53

Nuitka - XML Dump 54

Nuitka - Lessions Learned 55

Language Conversions to make things simpler 56

Conversion: The "assert" statement 57

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 5 of 79

Conversion: Generator Expressions 58

Conversion: The "comparison chain" expressions 59

Conversion: The "execfile" builtin 60

Conversion: Decorators 61

Conversion: Inplace Assignments 62

Conversion: Complex Assignments 63

Conversion: Unpacking Assignments 64

Conversion: With Statements 66

Conversion: For Loops 69

Conversion: While Loops 71

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 6 of 79

Conversion: Exception Handler Values 72

Conversion: try.. except else branches 74

Conversion: Classes Creation 75

Nuitka the Project - Join 76

Nuitka the Project - License 77

Discussion 78

This Presentation 79

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 7 of 79

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 8 of 79

Topics (1 of 3)

• Goals for a true Python Compiler

• Only faster than before, no new language

• Impose no language limits

• Same error messages

• All extension modules should work

• Evaluated Alternatives

• PyPy / RPython (limited language)

• PyPy / JIT (JIT only)

• Pyrex / Cython (different language than Python, incompatible)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 9 of 79

Topics (2 of 3)

• Problematic Differences C++ and Python

• Operators or und and do not match

• No try .. finally in C++

• Evaluation of function call arguments

• Strings

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 10 of 79

Topics (3 of 3)

• Lessons Learned

• Surprises

• Reformulations

• Nuitka the Project

• The git flow

• Project Plan

• Status

• Join

• License

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 11 of 79

Goals for a true Python Compiler (1 of 2)

• Pure Python, just faster

Special language constructs are a "No go", also annotation in a separate file
should not be done.

• Better code, even where performance matters

The Python-Compiler shall make programmers writer better code, not worse

1. It shouldn't be necessary to avoid named constants, only because those are
slower.

2. Functions calls should be written in the most readable way, no the most
CPython run time efficient way.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 12 of 79

Goals for a true Python Compiler (2 of 2)

• Report problems at run time at compile time.

When a variable is read, that has never been set to a value, this is noticed in
Python only late. That costs development time, test time, a whole lot.

The compiler should assume the role of PyLint largely, and eventually achieve
even more than it.

• No Limits

Everything that Python has, the compiler must do it too. No matter how much it
hurts. And Python allows a lot.

• Original error messages
For syntax errors, type errors for function calls, etc. as far as possible the original
error messages. Of course, new warnings will be welcome.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 13 of 79

Goal: Pure Python - only faster

• Adding Types to Python

1. If a variable has the type cint, how will overflow work? As in C, or not at all
as in Python?

2. If a variable has the type char *, is that string then mutable? As in C, or
not at all, as in Python?

3. What happens during conversions, Exceptions raise them, which?

4. A whole new semantics is bad.

Instead the Python Compiler should recognize, if a performance gain is
possible, and either at compile time or run time use code that handles
overflows so the result will be same as in CPython.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 14 of 79

Goal: Pure Python - only faster (1 of 4)

• Typeannotations in a separate file

1. Only effective when executed by the compiler. Pity!

2. Indeed, statements like "must be an integer" are important information.

These improve the code quality generally, they are often like assertions,
and as such should not be external.

3. Maintaining two files has its own difficulties. I personally am happy to get
along with a single one.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 15 of 79

Goal: Pure Python - only faster (2 of 4)

• Who wants to learn a new language.

Certainly not all of us.

Some of us surely, learning or even inventing new languages can be exciting. I
invented a language 30 years ago.

Some do it out of necessity, that pure Python currently it not as fast, with the
exception of PyPy JIT maybe, but that one doesn't do everything as well.

The compiler should liberate these people.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 16 of 79

Goal: Pure Python - only faster (3 of 4)

• New language means loosing all the tools

1. IDE auto completion (emacs python-mode, Eclipse, etc.)

2. IDE syntax highlighting

3. PyLint checks

4. Dependency graphs

5. No simple fallback to CPython, Jython, PyPy, IronPython, etc.
That hurts, I don't want to/can't live without these.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 17 of 79

Goal: Pure Python - only faster (4 of 4)

• Proposed Solution without new language

A module hints to contain checks implemented in Python, assertions, etc.

x = hints.mustbeint(x)

The compiler recognizes these hints and x in C++ may become int x or
PyObjectOrInt.

Ideally, these hints will be recognized by inlining and understanding mustbeint
consequences, that follow as well from this:

x = int(x)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 18 of 79

Goal: Code is not Performance Victim (1 of 5)
meters_per_nautical_mile = 1852

def convertMetersToNauticalMiles(meters):
 return meters / meters_per_nautical_mile

def convertNauticalMilesToMeters(miles):
 return miles * meters_per_nautical_mile

def convertMetersToNauticalMiles(meters):
 return meters / 1852

def convertNauticalMilesToMeters(miles):
 return miles * 1852

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 19 of 79

Goal: Code is not Performance Victim (2 of 5)
def someFunction():
 len = len

 # some len using code follows

• Another evil code optimization

• Copying globale variables into local namespace makes things less readable, and
less readable. But without it, len() is much slower to call.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 20 of 79

Goal: Code is not Performance Victim (3 of 5)
return Generator.getFunctionCallCode(
 function_identifier = function_identifier,
 argument_tuple = positional_args_identifier,
 argument_dictionary = kw_identifier,
 star_list_identifier = star_list_identifier,
 star_dict_identifier = star_dict_identifier,
)

return Generator.getFunctionCallCode(
 function_identifier, argument_tuple, kw_identifier, star_list_identifier, star_dict_identifier
)

Keyword arguments are extremly costly. For each call, a new dictionary is created and
passed, where the called function needs to make tests per argument name, extra
argument, argument name types, etc.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 21 of 79

Goal: Code is not Performance Victim (4 of 5)

• Performance Optimization for CPython almost always means:

1. Less readable code than necessary

2. Worse design than necessary

• All of these, a compiler can handle better

Without changing the source code, except possibly to add extra checks.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 22 of 79

Goal: Code is not Performance Victim (5 of 5)

• Performance optimizations in source code need to no longer have a point

1. The developer shouldn't write int where it's clear by looking at the source

2. Manual inlining, copying identifiers to local scope, etc. shall become
unnecessary

• We are into Python for the readable code, aren't we? So to us fast is just a
feature, that somebody else should provide.

• That also gives my reason as for why I work on Nuitka.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 23 of 79

Discarded Alternative: PyPy - RPython (1 of 2)

• I have developed patches for PyPy/RPython:

These patches were accepted, all of them trivial stuff that came up during a trial
usage of RPython. The community of PyPy was very friendly and cooperative.
Everything worked via IRC channel and patches. I liked it a lot.

• Experimented with RPython

Rewriting the performance critical parts in RPython was possible and partially was
fun. Little things could be added easily, but ...

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 24 of 79

Discarded Alternative: PyPy - RPython (2 of 2)

• A reduced Compiler

Unfortunately RPython means "reduced" Python.

That forced design changes in the application that I didn't like, and ultimately
made me not persue that path.

• That way, I can't reach my goals

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 25 of 79

Discarded Alternative: PyPy - JIT

• But it's not a compiler

A JIT never really knows, how far to look, what to consider, without creating too
much pointless overhead. Therefore a JIT must constrain itself in its analysis.

• Too complex

The design is really, really impressive, but that also means it's too complex.

• Many goals are reachable only partially

Whatever the JIT recognizes, that is solved, what not, is not solved.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 26 of 79

Discarded Alternative: Pyrex / Cython

• I have developed patches for Cython:

These were not accepted, because they would have moved Cython away from
Pyrex, which was important at the time.

• And:

The direction of the project was totally in mismatch. A lot of developers and users
have productive code in a language that is absolutely not Python.

The main goal of Cython is in my humble opinion to connect Python modules to
C++, i.e. bindings. Whole Python programs appears to not be a major goal. Also,
optimizable by hand is the top priority.

• Ultimately that means no overlap in goals.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 27 of 79

Nuitka - Tailored to Goals

• Created explicitly to achieve all stated goals

• No time pressure, need not be fast immediately

Can do things the correct /TM/ way, no stop gap is needed

• Named after my wife Anna

Anna - Annuitka - Nuitka

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 28 of 79

Target Language
The decision for C++11 is ultimately:

• against portability (gcc only at the time, clang not, no MSVC yet)

• against language knowledge

All of these are important drawbacks, yet for C++11 spoke easier code generation:

• variadic templates (helped initially)

• raw strings

With C++03 that would have required Boost, which also achieves a lot of C++11. But
then there are still things like "raw strings", who save a lot of work.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 29 of 79

Generated Code (1 of 2)
print "& (3)", a & b & d

PRINT_ITEM_TO(NULL, _python_str_digest_2c9fbb02f98767c025af8ac4a1461a18);
PRINT_ITEM_TO(NULL,
 PyObjectTemporary(
 BINARY_OPERATION(
 PyNumber_And,
 PyObjectTemporary(
 BINARY_OPERATION(
 PyNumber_And, _mvar___main___a.asObject0(), _mvar___main___b.asObject0()
)
).asObject(),
 _mvar___main___d.asObject0()
)
).asObject()
);
PRINT_NEW_LINE_TO(NULL);

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 30 of 79

Generated Code (2 of 2)
An important design choice for generated code, was to avoid having to manage
temporary PyObject * within code. Instead, Python expressions, should translated
to C++ expressions. Otherwise generated code would have to handle release.

To aid it, we have PyObjectTemporary and its destructor.

The string & containing, cannot become a C++ identifier, therefore a hash code is
used. A string "value" would become _python_str_plain_value.

The BINARY_OPERATION is a wrapper for the CPython C-API, that throws a C++
Exception, should an error be indicated (NULL return).

Within Nuitka generated C++ return codes are not checked, in error case, a C++
exception is raised. That allows the C++ compile to manage the release of
PyObjectTemporary or PyObjectLocalVariable, PyObjectSharedVariable
references.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 31 of 79

Python to C++ gap (1 of 10)
Boolean operators in Python are actually sections:

a or b # Really either "a" or "b" as that value.

a || b // Won't work, is "true" or "false"

Solution without temporary variables. The GNU extension ?: :

SELECT_IF_TRUE(_mvar___main___a.asObject()) ?: _mvar___main___b.asObject()

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 32 of 79

Python to C++ gap (2 of 10)
The ?: operator is "short-circuit", that means, the right hand side, is only evaluated,
when SELECT_IF_TRUE didn't return NULL. This way, the behavior of Python can be
achieved.

Using a temporary variable, it could be done this like:
(tmp_object = SELECT_IF_TRUE(_mvar___main___a.asObject())) ? (tmp_object): _mvar___main___b.asObject()

It's not done yet, as there is currently no C++11 compiler that doesn't support the GNU
extension.

The ternary operator according to standard has a sequence point, that makes sure the
assignment is executed, before the values of ? are allowed to be used.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 33 of 79

Python to C++ gap (3 of 10)
Comparison chains don't work in C++:

f() < g() < h() # Calls "g()" only once

We need to re-write that, to non-Python as described in Developer Manual:

With "temp variables" and "assignment expressions", absolutely the same as:
f() < (tmp_g = g()) and tmp_g < (tmp_h = h())

Assignment expressions are supported by C++ and the || and && operators are
sequence points to these assignments according to C++ standard.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 34 of 79

Python to C++ gap (4 of 10)
In C++ there is no try .. finally construct:

The C++ gods are so convinced of the advantages of RAII (Resource Acquisition is
Initialization), they don't offer it. They surely have their reasons, which are of no interest
here.

So try .. finally` needs to be emulated. This is done by catching exceptions,
saving them to a variable, executing the finally code, and the re-throwing the saved
exception.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 35 of 79

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

Python to C++ gap (5 of 10)
Complications occur because of break, continue, and return:

while something():
 try:
 needs_cleanup()

 if some_condition():
 break
 elif other_condition():
 continue
 else:
 return result
 finally:
 cleanup()

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 36 of 79

Python to C++ gap (6 of 10)
The call to cleanup is happening in all runs of the loop.

In fact, break, continue and return, need to be treated just like exceptions, therefore,
they are implemented as C++ exceptions, dependent from where they occur:

Inside try .. finally:

throw BreakException()

Outside:

break

Unfortunately, g++ is not (yet?) clever enough to avoid the exception at run time.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 37 of 79

Python to C++ gap (7 of 10)
Function Calls:

In Python the order of evaluation of parameters is guaranteed. In C++ it is not in any
way:

Python calls a, b, c, then f, in that exact order
f(a(), b(), c())

// C++ has undefined evaluation order, may call a, b, c in any order
f(a(), b(), c());

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 38 of 79

Python to C++ gap (8 of 10)
Function calls, continued:

ARM and Intel have a difference with g++, as does "clang" on Intel:

• left to right (ARM, registers for parameters)

• right to left (Intel, stack for parameters)

In C++ there is no general solution. By clever use of Macros, one can define every
function is a way, that makes sure parameters are evaluated, in the compiler specific
way:
#define RICH_COMPARE_LT(operand1, operand2) _RICH_COMPARE_LT(EVAL_ORDERED_2(operand1, operand2))

PyObject *_RICH_COMPARE_LT(EVAL_ORDERED_2(PyObject *operand1, PyObject *operand2));

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 39 of 79

Python to C++ gap (9 of 10)
Strings:

Python has very elegant raw strings. With them, you can include practically every
"blob" in the code:

r'Anything goes here'

C++11 also has "raw strings":

R"'raw(Anything goes here)raw"

But for them to work properly, at least with g++, such code is needed:

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 40 of 79

Python to C++ gap (10 of 10)
def decide(match):
 if match.group(0) == "\n":
 return end + r' "\n" ' + start
 elif match.group(0) == "\r":
 return end + r' "\r" ' + start
 elif match.group(0) == "\0":
 return end + r' "\0" ' + start
 elif match.group(0) == "??":
 return end + r' "??" ' + start
 else:
 return end + r' "\\" ' + start

result = re.sub("\n|\r|\0|\\\\|\\?\\?", decide, result)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 41 of 79

Nuitka Design - Outside View

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 42 of 79

Nuitka Design - Inside View

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 43 of 79

Nuitka the Project - git flow (1 of 2)

• First used for release 0.3.11, up to current release 0.3.23.

• Stable

The stable version should be perfect at all times and is fully supported. As soon as
bugs are known and have fixes, hotfix releases containing only these fixes will be
done.

• Develop

Future possible release, that is supposed to be fully correct, but it isn't supported
as much, and can at times have problems or inconsistencies.

• Feature Branches

Here, longer taking, single topic developments, that are not yet finished, are made
public. Need not work at all.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 44 of 79

Nuitka the Project - git flow (2 of 2)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 45 of 79

Nuitka the Project - Plan (1 of 2)

1. Feature Parity with CPython

Understand the whole language and be fully compatible.

2. Generate efficient C++ code

With just using PyObject * implement the behaviour efficiently, and achieve a speed
gain from that already.

3. "Constant Propagation"

Identify as much values and constraints at compile time. And on that basis, generate
even more efficient code.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 46 of 79

Nuitka the Project - Plan (2 of 2)

4. "Type Inference"

Detect and special case str, int, list, etc. in the program.

5. Interfacing with C code.

Nuitka should become able to recognize and understand ctypes and cffi bindings
to the point, where it can avoid using ctypes, and make direct calls and accesses,
based on thos declarations.

6. hints Module

The tool for the developer to provide extra information to Nuitka and CPython, e.g. that
a parameter value has to be an int value.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 47 of 79

Nuitka the Project - Status (1 of 5)

1. Feature Parity with CPython

Achieved.

The frame stack, pickling of compiled functions, compatibility is a solved problem.

2. Generate efficient C++ code

The pystone benchmark gives a nice speedup by 258%.

Bei pybench the gain is often inf, that means, Nuitka takes no measurable time, or the
factors are simply too high.

Only exceptions are not yet fast enough. These are slow in C++, and should be
avoided more often. Here, there we have more work to do.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 48 of 79

Nuitka the Project - Status (2 of 5)

3. "Constant Propagation"

Largely achieved.

4. "Type Inference"

Only starting to exist.

Note

Because it has to be reliable, we cannot borrow code from PyLint, which is
allowed more optimistic assumptions.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 49 of 79

Nuitka das Projekt - Status (3 of 5)

5. Interface to C code

Does not exist yet.

The inclusion of C-Headers and syntax is a taboo.

Vision for Nuitka, it should be possible, to generate direct calls and accesses from
declarations of ctypes module.

That would be the base of portable bindings, that just work everywhere, and that these
- using Nuitka - would be possible to become extremely fast.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 50 of 79

Nuitka the Project - Status (4 of 5)

6. hints Module

Does not yet exist.

Should check under CPython and raise errors, just like under Nuitka. Ideally, the code
simply allows Nuitka to detect, what they do, and make conclusions based on that,
which may be too ambitious though.

It would be great, if there was found common ground with other projects.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 51 of 79

Nuitka the Project - Status (5 of 5)

• Nuitka is known to work under:

• Linux on x86/x64

• Linux on ARM

• Crosscompile to Windows

• Windows native using MinGW

• Nuitka needs:

• Python 2.6 or 2.7, 3.2 experimental

• g++ 4.5, g++ 4.6, g++ 4.7 or clang 3.0

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 52 of 79

Nuitka the Project - Activities
Current:

• Type Inference

• Speedcenter revival on http://speedcenter.nuitka.net

• CPython2.7 tests also a as git repository with documented commits per diff

• XML based Regression Tests

Maybe this year:

• Making direct calls to known functions, removing argument parsing inside
programs

• Go through CPython3.2 tests pass, what is missing

• ShedSkin tests to compare with

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 53 of 79

http://speedcenter.nuitka.net

Nuitka - XML Dump
Python:

tryBreakFinallyTest()

Quote from XML-Dump:
<node line="27" kind="StatementExpressionOnly">
 <role name="expression">
 <node line="27" kind="ExpressionCall">
 <role name="called">
 <node variable="ModuleVariableReference to ModuleVariable 'tryBreakFinallyTest' of '__main__'"
 line="27" kind="ExpressionVariableRef" name="tryBreakFinallyTest"/>
 </role>
 <role name="positional_args"/>
 <role name="pairs"/>
 <role name="list_star_arg"/>
 <role name="dict_star_arg"/>
 </node>
 </role>
</node>

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 54 of 79

Nuitka - Lessions Learned
assert type(a) is float
a == a # how can this be possible False

Equality cannot be assumed even if a is a is true.

[(x,y) for x in range(3) for y in range(4)]

Nested comprehensions. Never saw them before, probably for a reason.

a = yield(value)

Never realized that yield has turned into an expression that could become not None.
Didn't see much code doing that though.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 55 of 79

Language Conversions to make things simpler

• There are cases, where Python language can in fact be expressed in a simpler or
more general way, and where we choose to do that at either tree building or
optimization time.

• These simplifications are very important for optimisation. Releases in the last
months have mainly been about these.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 56 of 79

Conversion: The "assert" statement
The assert statement is a special statement in Python, allowed by the syntax. It has two
forms, with and without a second argument. The handling in Nuitka is:

assert value, raise_arg
Absolutely the same as:
if not value:
 raise AssertionError, raise_arg

assert value
Absolutely the same as:
if not value:
 raise AssertionError

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 57 of 79

Conversion: Generator Expressions
There are re-formulated as functions.

Generally they are turned into calls of function bodies with (potentially nested) for
loops.

gen = (x*2 for x in range(8) if cond())

def _gen_helper(__iterator):
 for x in __iterator:
 if cond():
 yield x*2

gen = _gen_helper(range(8))

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 58 of 79

Conversion: The "comparison chain" expressions
a < b > c < d
With "temp variables" and "assignment expressions", absolutely the same as:
a < (tmp_b = b) and tmp_b > (tmp_c = c) and (tmp_c < d)

• This transformation is performed at tree building already.

• The temporary variables keep the value for the potential read in the same
expression.

• The syntax is not Python, and only pseudo language to expression the internal
structure of the node tree after the transformation.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 59 of 79

Conversion: The "execfile" builtin
Handling is:

execfile(filename)

Basically the same as:

exec(compile(open(filename).read()), filename, "exec")

This allows optimizations to discover the file opening nature easily and apply file
embedding or whatever we will have there one day.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 60 of 79

Conversion: Decorators
When one learns about decorators, you see that:

@decorator
def function():
 pass
Is basically the same as:
def function():
 pass
function = decorator(function)

The only difference is the assignment to function. In the "@decorator" case, if the
decorator fails with an exception, the name "function" is not assigned.

Important for Nuitka, it never sees decorator as special.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 61 of 79

Conversion: Inplace Assignments
Inplace assignments are re-formulated to an expression using temporary variables.

These are not as much a reformulation of "+=" to "+", but instead one which makes it
explicit that the assign target may change its value.

a += b

_tmp = a.__iadd__(b)

if a is not _tmp:
 a = _tmp

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 62 of 79

Conversion: Complex Assignments
Complex assignments are defined as those with multiple targets to assign from a single
source and are re-formulated to such using a temporary variable and multiple simple
assignments instead.

a = b = c

_tmp = c
b = _tmp
a = _tmp
del _tmp

This is possible, because in Python, if one assignment fails, it can just be interrupted,
so in fact, they are sequential, and all that is required is to not calculate "c" twice, which
the temporary variable takes care of.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 63 of 79

Conversion: Unpacking Assignments
Unpacking assignments are re-formulated to use temporary variables as well.

a, b.attr, c[ind] = d = e, f, g = h()

Becomes this:

_tmp = h()

_iter1 = iter(_tmp)
_tmp1 = unpack(_iter1, 3)
_tmp2 = unpack(_iter1, 3)
_tmp3 = unpack(_iter1, 3)
unpack_check(_iter1)
a = _tmp1

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 64 of 79

b.attr = _tmp2
c[ind] = _tmp3
d = _tmp
_iter2 = iter(_tmp)
_tmp4 = unpack(_iter2, 3)
_tmp5 = unpack(_iter2, 3)
_tmp6 = unpack(_iter2, 3)
unpack_check(_iter1)
e = _tmp4
f = _tmp5
g = _tmp6

That way, the unpacking is decomposed into multiple simple statementy. It will be the
job of optimizations to try and remove unnecessary unpacking, in case e.g. the source
is a known tuple or list creation.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 65 of 79

Conversion: With Statements
The with statements are re-formulated to use temporary variables as well. The taking
and calling of __enter__ and __exit__ with arguments, is presented with standard
operations instead. The promise to call __exit__ is fulfilled by try .. except
clause instead.

with some_context as x:
 something(x)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 66 of 79

tmp_source = some_context

Actually it needs to be "special lookup" for Python2.7, so attribute lookup won't
be exactly what is there.
tmp_exit = tmp_source.__exit__

This one must be held for the whole with statement, it may be assigned or not, in
our example it is. If an exception occurs when calling "__enter__", the "__exit__"
should not be called.
tmp_enter_result = tmp_source.__enter__()

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 67 of 79

try:
 # Now the assignment is to be done, if there is any name for the manager given,
 # this may become multiple assignment statements and even unpacking ones.
 x = tmp_enter_result

 # Then the code of the "with" block.
 something(x)
except Exception:
 # Note: This part of the code must not set line numbers, which we indicate with
 # special source code references, which we call "internal". Otherwise the line
 # of the frame would get corrupted.

 if not tmp_exit(*sys.exc_info()):
 raise
else:
 # Call the exit if no exception occurred with all arguments as "None".
 tmp_exit(None, None, None)

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 68 of 79

Conversion: For Loops
The for loops use normal assignments and handle the iterator that is implicit in the code
explicitely.

for x,y in iterable:
 if something(x):
 break
else:
 otherwise()

This is roughly equivalent to the following code:

_iter = iter(iterable)
_no_break_indicator = False

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 69 of 79

while True:
 try:
 _tmp_value = next(_iter)
 except StopIteration:
 # Set the indicator that the else branch may be executed.
 _no_break_indicator = True

 # Optimization should be able to tell that the else branch is run only once.
 break

 # Normal assignment re-formulation applies to this assignment of course.
 x, y = _tmp_value
 del _tmp_value

 if something(x):
 break

if _no_break_indicator:
 otherwise()

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 70 of 79

Conversion: While Loops
Loops in Nuitka have no condition attached anymore, so while loops are re-formulated
like this:

while condition:
 something()

while True:
 if not condition:
 break

 something()

This is to totally remove the specialization of loops, with the condition moved to the
loop body in a conditional statement, which contains a break statement.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 71 of 79

Conversion: Exception Handler Values
Exception handlers may assign the caught exception value in the handler definition.

try:
 something()
except Exception as e:
 handle_it()

That is equivalent to the following:

try:
 something()
except Exception:
 e = sys.exc_info()[1]
 handle_it()

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 72 of 79

Of course, the value of the current exception, use special references for assignments,
that access the C++ and don't go via "sys.exc_info" at all, these are called
"CaughtExceptionValueRef".

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 73 of 79

Conversion: try.. except else branches
Much like else branches of loops, an indicator variable is used to indicate the entry
into any of the exception handlers.

Therefore, the else becomes a real conditional statement in the node tree, checking
the indicator variable and guarding the execution of the else branch.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 74 of 79

Conversion: Classes Creation
Classes have a body that only serves to build the class dictionary and is a normal
function otherwise. This is expressed with the following re-formulation:

class SomeClass(SomeBase,AnotherBase)
 some_member = 3

def _makeSomeClass:
 some_member = 3

 return locals()

 # force locals to be a writable dictionary, will be optimized away, but that
 # property will stick.
 exec ""

SomeClass = make_class("SomeClass", (SomeBase, AnotherBase), _makeSomeClass())

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 75 of 79

Nuitka the Project - Join
You are welcome.

Am accepting patches as ...

• whatever diff -ru outputs

• git formatted "patch queues"

• git pull requests

The integration work is mine. Based on git branches master or develop, or source
archive, no matter, I will integrate your work and attribute it to you.

There is the mailing list nuitka-dev on which most of the announcements will be done
too. Also there are RSS Feeds on http://nuitka.net, where you will be kept up to date.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 76 of 79

http://nuitka.net/pages/mailinglist.html
http://nuitka.net

Nuitka the Project - License
Starting now, I have released Nuitka under Apache License 2.0.

• Very liberal license

• Allows Nuitka to be used with practically all software

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 77 of 79

http://www.apache.org/licenses/LICENSE-2.0

Discussion

• Will be here for all of PyCON-EU, and welcome questions and ideas in person.
Questions also welcome via Email to kayhayen@gmx.de or on the mailing list.

• My hope is:

1. Some exchange with PyPy developers, maybe I can use the PyPy Tests as
well, the test runner appears to be specific.

2. A critical Review of Nuitka design and source code, would be great.

3. Ideas from C++ people, how Nuitka could produce better code.

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 78 of 79

mailto:kayhayen@gmx.de
http://nuitka.net/pages/mailinglist.html

This Presentation

• Created with rst2pdf

• Download the PDF http://nuitka.net/pr/Nuitka-Presentation-PyCON-EU-2012.pdf

• Diagrams created with OOo Draw

• Icons from visualpharm.com (License requires link)

• For presentation on PyCon EU

Nuitka - The Python Compiler

© Kay Hayen, 2012 | Page 79 of 79

http://code.google.com/p/rst2pdf/
http://nuitka.net/pr/Nuitka-Presentation-PyCON-EU-2012.pdf
http://incubator.apache.org/openofficeorg/
http://visualpharm.com
http://europython.org

	Topics (1 of 3)
	Topics (2 of 3)
	Topics (3 of 3)
	Goals for a true Python Compiler (1 of 2)
	Goals for a true Python Compiler (2 of 2)
	Goal: Pure Python - only faster
	Goal: Pure Python - only faster (1 of 4)
	Goal: Pure Python - only faster (2 of 4)
	Goal: Pure Python - only faster (3 of 4)
	Goal: Pure Python - only faster (4 of 4)
	Goal: Code is not Performance Victim (1 of 5)
	Goal: Code is not Performance Victim (2 of 5)
	Goal: Code is not Performance Victim (3 of 5)
	Goal: Code is not Performance Victim (4 of 5)
	Goal: Code is not Performance Victim (5 of 5)
	Discarded Alternative: PyPy - RPython (1 of 2)
	Discarded Alternative: PyPy - RPython (2 of 2)
	Discarded Alternative: PyPy - JIT
	Discarded Alternative: Pyrex / Cython
	Nuitka - Tailored to Goals
	Target Language
	Generated Code (1 of 2)
	Generated Code (2 of 2)
	Python to C++ gap (1 of 10)
	Python to C++ gap (2 of 10)
	Python to C++ gap (3 of 10)
	Python to C++ gap (4 of 10)
	Python to C++ gap (5 of 10)
	Python to C++ gap (6 of 10)
	Python to C++ gap (7 of 10)
	Python to C++ gap (8 of 10)
	Python to C++ gap (9 of 10)
	Python to C++ gap (10 of 10)
	Nuitka Design - Outside View
	Nuitka Design - Inside View
	Nuitka the Project - git flow (1 of 2)
	Nuitka the Project - git flow (2 of 2)
	Nuitka the Project - Plan (1 of 2)
	Nuitka the Project - Plan (2 of 2)
	Nuitka the Project - Status (1 of 5)
	Nuitka the Project - Status (2 of 5)
	Nuitka das Projekt - Status (3 of 5)
	Nuitka the Project - Status (4 of 5)
	Nuitka the Project - Status (5 of 5)
	Nuitka the Project - Activities
	Nuitka - XML Dump
	Nuitka - Lessions Learned
	Language Conversions to make things simpler
	Conversion: The "assert" statement
	Conversion: Generator Expressions
	Conversion: The "comparison chain" expressions
	Conversion: The "execfile" builtin
	Conversion: Decorators
	Conversion: Inplace Assignments
	Conversion: Complex Assignments
	Conversion: Unpacking Assignments
	Conversion: With Statements
	Conversion: For Loops
	Conversion: While Loops
	Conversion: Exception Handler Values
	Conversion: try.. except else branches
	Conversion: Classes Creation
	Nuitka the Project - Join
	Nuitka the Project - License
	Discussion
	This Presentation

